LAB

Organoid Model을 이용한 신경질환 연구 – iPSC 기반 3D Brain Organoid 만들기🧠 🔬 (Using Organoid Models for Neurological Disease Research – Building iPSC-Based 3D Brain Organoids)

Kevin Baek 2025. 3. 12. 03:03
반응형

1️⃣ Brain Organoid란 무엇인가?

Brain Organoid(뇌 오가노이드)는 줄기세포(iPSC 또는 ESC)를 3D로 배양하여 뇌 조직과 유사한 구조를 형성하는 인공 미니 뇌 모델임.
실제 신경발달 과정을 모방하며 **신경세포(neurons), 아교세포(glial cells), 신경 네트워크(neuronal networks)**까지 형성됨.
✅ 2D 신경세포 배양의 한계를 극복하여 뇌질환 연구, 약물 스크리닝, 세포 치료제 개발 등에 활용됨.


2️⃣ Brain Organoid를 왜 연구하는가?

퇴행성 뇌질환 연구 🧠

  • 알츠하이머병(AD): 아밀로이드 플라크(Aβ)와 타우(Tau) 단백질 응집
  • 파킨슨병(PD): 도파민 뉴런 퇴행 & α-synuclein 응집
  • 루게릭병(ALS): TDP-43, FUS 단백질 병리 연구

신경발달 질환 모델링 👶

  • 자폐 스펙트럼 장애(ASD), 소두증(microcephaly), 뇌전증(epilepsy) 연구
  • Zika 바이러스 감염이 태아 신경발달에 미치는 영향 연구

약물 스크리닝 및 정밀 의학 💊

  • 새로운 신경 보호(neuroprotection) 타겟 발굴
  • 환자 유래 iPSC로 맞춤형 치료제 개발

Brain-Blood Barrier (BBB) 연구 🚧

  • 뇌 오가노이드 + 뇌혈관 모델을 결합하여 BBB 투과성 평가 가능

3️⃣ iPSC 기반 Brain Organoid 제작 과정

🔹 Step 1: iPSC/ESC 배양 및 뉴런 분화

  1. iPSC(유도만능줄기세포, Induced Pluripotent Stem Cells) 유도
    • 환자 피부세포/혈액세포 → Yamanaka Factor (Oct4, Sox2, Klf4, c-Myc) 도입 → iPSC 생성
  2. 신경 외배엽(Neuroectoderm) 유도
    • iPSC를 저부착 배양(ultra-low attachment plates) 환경에서 배양 → 신경 배아체(EB, Embryoid Body) 형성
  3. Neural Rosette 구조 형성
    • Neural Rosette는 초기 신경발달 구조로, 신경 줄기세포(NSC, Neural Stem Cells)로 분화할 수 있음.

🔹 Step 2: 3D Brain Organoid 배양

  1. Matrigel & ECM 첨가 → 3D 환경 구축
    • Brain Organoid는 세포외기질(ECM)이 포함된 Matrigel에서 배양되어 신경세포와 아교세포(astrocytes, oligodendrocytes) 형성 촉진
  2. 회전 배양(Bioreactor) 활용
    • 배양 액체 순환을 통해 산소 공급 및 영양소 전달 최적화 → 장기간 배양 가능
  3. 뇌 영역 특이적 분화 유도 가능
    • 특정 신경 성장인자(NGF, BDNF, Wnt, Shh 등)를 첨가하여 대뇌피질(cortex), 해마(hippocampus), 소뇌(cerebellum) 등 특정 부위 유도 가능

4️⃣ Brain Organoid 분석 방법

🧪 1) 면역형광 염색 (IF, Immunofluorescence)

신경세포 마커

  • MAP2, NeuN → 성숙 뉴런
  • TUJ1 (βIII-tubulin) → 미성숙 뉴런

아교세포 마커

  • GFAP → 성상세포(Astrocytes)
  • Olig2 → 희소돌기아교세포(Oligodendrocytes)

시냅스 & 네트워크 형성 마커

  • Synaptophysin, PSD-95 → 시냅스 형성

📊 2) Bulk RNA-seq & scRNA-seq 분석

세포 유형 특이적 발현 유전자 분석

  • Single-cell RNA sequencing (scRNA-seq)으로 오가노이드 내 세포 유형 분포 확인
    유전자 발현 패턴 분석
  • 환자 유래 iPSC를 이용해 정상 vs 질환 모델 유전자 발현 차이 분석

⚡ 3) 전기생리학 (Electrophysiology) 측정

패치 클램프(Patch-clamp) 실험

  • 뉴런 활성전위(Action potential) 확인
    MEAs (Microelectrode Array) 분석
  • 오가노이드 내 뉴런 네트워크 형성 정도 평가

5️⃣ Brain Organoid 연구의 한계 & 해결 방안

한계점                                                                 해결 방법

혈관이 없음 Microfluidics & 혈관형성 인자(VEGF) 첨가
배양 시간이 길어질수록 괴사 발생 Bioreactor 활용, 산소 공급 개선
면역세포 없음 Microglia 포함된 Co-culture 시스템 구축
BBB 모델링이 어려움 Brain Organoid + Vascular Organoid 결합 연구 진행 중

6️⃣ Brain Organoid 연구 최신 동향

📌 CRISPR-Cas9을 이용한 유전자 교정 오가노이드 모델 개발
📌 3D Bio-printing을 활용한 Brain Organoid 제작
📌 Microglia 포함된 Inflammatory Brain Organoid 모델 개발


7️⃣ 결론: Brain Organoid, 신경질환 연구의 미래 🚀

Brain Organoid는 퇴행성 뇌질환, 신경발달 장애, 뇌종양, 감염성 질환 연구에 큰 혁신을 가져옴.
특히 iPSC 기반 환자 맞춤형 오가노이드를 활용하면 개인 맞춤 치료법 개발도 가능해짐.
혈관 포함 오가노이드, BBB 모델 개발, 면역세포 포함 연구가 활발히 진행 중이며, 앞으로 더 정교한 인공 미니 브레인이 가능할 것으로 예상됨.

🔥 iPSC 기반 Brain Organoid 연구에 대해 더 궁금한 점 있으면 언제든 질문 환영! 🔬💡

 

Refernece 맨 아래 있음.

 

---------------------------------------------------------------------------------------------------------------------------

1️⃣ What is a Brain Organoid?

A brain organoid is a 3D, lab-grown mini-brain model derived from iPSCs (induced pluripotent stem cells) or ESCs (embryonic stem cells).
✅ It mimics early brain development, forming neurons, glial cells, and functional neuronal networks.
✅ It overcomes the limitations of 2D neuronal cultures, making it valuable for neurological disease research, drug screening, and regenerative medicine.


2️⃣ Why Study Brain Organoids?

Neurodegenerative Disease Research 🧠

  • Alzheimer’s Disease (AD): Amyloid plaques & Tau protein aggregation
  • Parkinson’s Disease (PD): Dopaminergic neuron loss & α-synuclein aggregation
  • Amyotrophic Lateral Sclerosis (ALS): TDP-43 and FUS protein pathology

Neurodevelopmental Disorders 👶

  • Autism Spectrum Disorder (ASD), Microcephaly, Epilepsy
  • Studying Zika virus infection effects on fetal brain development

Drug Screening & Precision Medicine 💊

  • Identifying neuroprotective drug targets
  • Using patient-derived iPSCs for personalized therapy

Brain-Blood Barrier (BBB) Research 🚧

  • Developing BBB-integrated brain organoids to study drug permeability

3️⃣ Steps to Generate iPSC-Derived Brain Organoids

🔹 Step 1: iPSC/ESC Culture & Neural Differentiation

  1. Generating iPSCs from patients’ skin or blood cells
    • Reprogramming using Yamanaka factors (Oct4, Sox2, Klf4, c-Myc)
  2. Inducing Neuroectoderm Formation
    • Culturing iPSCs in ultra-low attachment plates → Formation of Embryoid Bodies (EBs)
  3. Neural Rosette Formation
    • Neural rosettes contain Neural Stem Cells (NSCs) essential for further differentiation

🔹 Step 2: 3D Brain Organoid Culture

  1. Embedding in Matrigel & ECM (Extracellular Matrix)
    • Provides a 3D environment that promotes the differentiation of neurons and glial cells
  2. Rotating Bioreactor Culture for Long-Term Growth
    • Enhances oxygen and nutrient diffusion, ensuring optimal maturation
  3. Region-Specific Differentiation
    • Adding growth factors (NGF, BDNF, Wnt, Shh) to guide cortical, hippocampal, or cerebellar differentiation

4️⃣ Methods to Analyze Brain Organoids

🧪 1) Immunofluorescence Staining (IF) for Cell Markers

Neuronal Markers

  • MAP2, NeuN → Mature Neurons
  • TUJ1 (βIII-tubulin) → Immature Neurons

Glial Cell Markers

  • GFAP → Astrocytes
  • Olig2 → Oligodendrocytes

Synapse & Neural Network Markers

  • Synaptophysin, PSD-95 → Synapse Formation

📊 2) Bulk RNA-seq & Single-Cell RNA-seq (scRNA-seq)

✅ Identifies cell type-specific gene expression patterns
✅ Compares gene expression between healthy vs. disease models


⚡ 3) Electrophysiological Measurements

Patch-clamp recording for action potential analysis
Microelectrode Arrays (MEAs) to assess neuronal network activity


5️⃣ Challenges & Solutions in Brain Organoid Research

Challenges                                                       Potential Solutions

Lack of vascularization Microfluidics & VEGF (vascular endothelial growth factor) treatment
Increased necrosis in long-term cultures Using bioreactors to improve oxygen diffusion
Absence of immune cells Co-culture with microglia & astrocytes
Limited BBB modeling Combining brain organoids with vascular organoids

6️⃣ Recent Advances in Brain Organoid Research

📌 CRISPR-Cas9 gene editing for organoid disease modeling
📌 3D bioprinting techniques for scalable organoid production
📌 Brain organoids with functional blood vessels (vascularized brain organoids)
📌 Microglia-containing inflammatory brain organoids


7️⃣ Conclusion: The Future of Brain Organoids in Neuroscience 🚀

Brain organoids have revolutionized the study of neurodegenerative diseases, neurodevelopmental disorders, and drug screening.
With iPSC-based personalized brain models, researchers can explore individualized treatment strategies for neurological disorders.
Advancements in vascularized organoids, BBB models, and immune cell integration are expected to further enhance the accuracy and applicability of brain organoids in biomedical research.

🔥 Interested in Brain Organoid Research? Let’s discuss more! 🧠🔬

 

 

📚 References for Brain Organoid Research (iPSC-based 3D Brain Model)

  1. Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9(10), 2329–2340. https://doi.org/10.1038/nprot.2014.158
  2. Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., et al. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545(7652), 48–53. https://doi.org/10.1038/nature22047
  3. Qian, X., Song, H., Ming, G. L. (2019). Brain organoids: advances, applications, and challenges. Development, 146(8), dev166074. https://doi.org/10.1242/dev.166074
  4. Kadoshima, T., Sakaguchi, H., Nakano, T., et al. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proceedings of the National Academy of Sciences, 110(50), 20284–20289. https://doi.org/10.1073/pnas.1315710110
  5. Pasca, A. M., Sloan, S. A., Clarke, L. E., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671–678. https://doi.org/10.1038/nmeth.3415
  6. Lancaster, M. A., Renner, M., Martin, C. A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379. https://doi.org/10.1038/nature12517
  7. Kelava, I., & Lancaster, M. A. (2016). Stem cell models of human brain development. Cell Stem Cell, 18(6), 736–748. https://doi.org/10.1016/j.stem.2016.05.022
  8. Yin, X., Mead, B. E., Safaee, H., et al. (2016). Engineering stem cell organoids. Cell Stem Cell, 18(1), 25–38. https://doi.org/10.1016/j.stem.2015.12.005
  9. Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., et al. (2018). An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology, 36(5), 432–441. https://doi.org/10.1038/nbt.4127
  10. Cakir, B., Xiang, Y., Tanaka, Y., et al. (2019). Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 16(11), 1169–1175. https://doi.org/10.1038/s41592-019-0586-5

 

 

#BrainOrganoid #Neuroscience #iPSC #StemCellResearch #OrganoidModel #3DBrainModel #NeurodegenerativeDisease #NeuralDifferentiation #CerebralOrganoid #Neurobiology #NeuroscienceResearch #TissueEngineering #AlzheimersResearch #ParkinsonsDisease #BrainDevelopment #Neuroimmunology #Microglia #GlialCells #SynapseFormation #NeuralNetworks #OrganoidTechnology #RegenerativeMedicine #Neuropharmacology #BBBModel #SingleCellRNAseq #CRISPRResearch #Electrophysiology #Neuroinflammation #MitochondrialDysfunction #PrecisionMedicine #Bioengineering

반응형